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Abstract

Impulsive motion of a flexible, beam-like arm is investigated in this paper. The arm is attached to an
inertial system through a revolute joint. A modelling approach and an analytical solution are outlined for
this problem. Comparisons are presented between analytical and numerical solutions. Finite motion due to
an impulsive event is also considered by simulations, and the results are compared to experimental data.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The behavior and control of a single flexible arm with a revolute joint has been the subject of
extensive research in recent years. This is a relatively simple system that possesses many important
hallmarks of more complex flexible systems. Especially the finite motion of single arms has been
studied intensively. Finite motion, however, can be greatly influenced by events whose duration is
negligible on the time scale determined by the fundamental frequencies of the system. The effects
of such events can be described as impulsive motion of the system, where the configuration of the
system may be considered unchanged during the time domain of this impulsive motion, and only
the velocities change suddenly. The importance of understanding the impulsive motion of a
flexible arm, which can lead to the better understanding of the behavior of more complex systems,
has of course also been realized, and several research projects have been dedicated to it.

There can be several types of events initiating impulsive motion. Perhaps, the most widely
known example is the collision between the end of the beam and an environment (an external
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object). This is the impulsive event that received the greatest attention (e.g., Refs. [1,2]). Another
example having more features of an intelligent, controlled system is the capture of an object by the
flexible arm. This example may also be used to represent co-operation between elements of an
integrated system. The study of the event of capture has received considerable attention in recent
years [3,4].

The description of impulsive motion phenomena was mostly based on Newton’s impact law
using discretized (finite element or assumed modes) flexible link models. No treatments have been
presented for the analytical solution of the impulsive motion problem where a continuous,
distributed parameter, flexible beam model is used. In this paper, we present such an analysis. We
use the concept of impulsive constraints to treat the impulsive motion as a constrained motion
problem. This concept is relatively new in applications related to flexible mechanical systems.
Only a few, recent publications considered this powerful approach in solving dynamics and
control problems in mechanical systems in connection with robotic applications (e.g., Ref. [5]).
We will pay attention only to impulsive motion initiated by either a collision or a capture. We will
also give a comparison between analytical results and numerical results obtained by using finite
element modelling. In the analysis of the constrained motion model and in the derivation,
Jourdain’s principle will be used, which besides the d’Alembert–Lagrange principle and Gauss’
principle constitutes the third fundamental representation for constrained system dynamics.

The objectives of this work can be summarized as:

* The description of a novel technique will be presented to model the impulsive motion of a
flexible beam capable of large rigid body motions. The flexible beam can be considered either
using a continuous or a discretized model. We will pay special attention to the continuous
model. A general analytical solution will be derived for the impulsive motion of the continuous
beam model to determine the discontinuities in the system variables due to an impulsive event
at the end of the beam.

* The analytical results will be compared to the results obtained through finite element
discretization of the beam for a specific impact configuration. For this configuration, published
experimental results are also available for the post-impact finite motion of a slewing flexible
beam. These results will be compared to the post-impact motion simulations obtained using the
finite element model to assess the analytical and simulation results, and also to investigate the
effects of other conditions (e.g., friction) on the impulsive and finite motions of the system.

2. Model for the flexible arm and the object

Consider the system shown in Fig. 1. The arm and the object move in a horizontal plane. It will
be assumed that the moment of inertia of the object is negligible, thus only its mass (mob) enters
the formulation. The arm includes a flexible link, an end effector modelled as a rigid body (me) at
end of the link with negligible moments of inertia, a rigid rotor and a rigid joint (not shown in
Fig. 1 in detail). Co-ordinate system x0y0z0 is an inertial frame, its unit vectors are ~eex0

; ~eey0
; ~eez0 :

Co-ordinate system xyz is a rotating frame attached to the undeformed state1 of the link or to the
rotor, its unit vectors are ~eex; ~eey; ~eez: The flexible link is modelled as a beam. Only its flexural
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flexibility is considered. The total mass of the link is ml and its length is l: The configuration of the
system can be completely described by the following co-ordinates. Co-ordinate q1ðtÞ describes
the position of the rotor and thus the position of the rigid body state of the link with respect to the
inertial frame; co-ordinates q2ðtÞ and q3ðtÞ describe the position of the object. wðx; tÞ describes
the flexural deflections of the link with respect to its rigid body state. The remaining four co-
ordinates are the boundary values for the flexible link, q4ðtÞ gives the flexural displacement of the
link at x ¼ 0; q5ðtÞ is the rotation of the cross-section of the link at x ¼ 0; q6ðtÞ is the flexural
displacement of the link at x ¼ l; and q7ðtÞ is the rotation of the cross-section of the link at x ¼ l
(‘‘boundary co-ordinates’’). Co-ordinates qi; (i ¼ 1;y; 7) are time-dependent variables, while
wðx; tÞ is time- and space-dependent variable representing the distributed mass and flexibility of
the link. With respect to the rotating frame, the flexible link can be considered as a beam clamped
at x ¼ 0; leading to q4 ¼ 0 and q5 ¼ 0: The following summarizes the kinematic quantities
necessary to describe the motion of every mass element of the system. The position and velocity of
an element of the flexible link with respect to the inertial system may be written as

~rrx ¼ x~eex þ w~eey; ð1Þ

and

’~rrx ¼ � ’q1w~eex þ ðx ’q1 þ ’wÞ~eey: ð2Þ

The position and velocity of the end effector me can be obtained as

~rrx ¼ l~eex þ q6~eey; ð3Þ

and

’~rre ¼ � ’q1q6~eex þ ðl ’q1 þ ’q6Þ~eey: ð4Þ

The position and velocity of the object are given as

~rrob ¼ q2~eex0
þ q3~eey0

; ð5Þ

and

’~rrob ¼ ’q2~eex0
þ ’q3~eey0

: ð6Þ
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If the object is an environment incapable of rigid body motion then ’q2 ¼ ’q3 ¼ 0 has to be used.
The position and velocity of an arbitrary element of the rotor are given by~rrr; and ’~rrr; respectively.
We do not detail these quantities, because the rotor is modelled as a rigid body rotating about a
fixed axis, and thus the resulting expressions can be handled by using known techniques without
explicit expression for the kinematic quantities. The system can be considered as a hybrid
parameter (discrete and distributed) system since both time-dependent and time- and space-
dependent co-ordinates have to be used to represent its configuration.

3. Modelling impulsive motion

Consider that the motion of the system is influenced by an impulsive event (capture or collision)
at time t1 due to the interaction of the end of the arm and the object. The duration of the
impulsive event is very short, and on the time scale in use it can be represented by interval
½t1 � e; t1 þ e; e-0�: The co-ordinates describing the configuration of the system can be
considered unchanged during this interval. Due to the impulsive interaction of the arm and the
object, the velocities of the system will change suddenly during this interval. We are interested in
determining the ‘‘outcome’’ i.e., the post-impact velocities of the system at t1 þ e: For the post-
impact velocities, however, we have certain conditions depending on the initiating impulsive
event. For a capture, the post-impact velocity of the end effector and that of the object must be
the same. For a collision, one of the impact laws can be used to describe kinetic energy dissipation
and to define the coefficient of restitution and the interdependence between the pre- and post-
impact states of the system.

These conditions on the post-impact velocities can be represented by impulsive constraints [6–8]
for the domain of impulsive motion. For our case, these constraints can be expressed, by using
Eqs. (4) and (6), as

’qþ
2 þ kx0

¼ � ’qþ1 q6 cos q1 � ðl ’qþ1 þ ’qþ
6 Þsin q1; ð7Þ

and

’qþ3 þ ky0
¼ � ’qþ

1 q6 sin q1 þ ðl ’qþ
1 þ ’qþ6 Þcos q1; ð8Þ

where ð::Þþ denotes post-impact velocities, and ð::Þ� denotes pre-impact velocities. Coefficients kx0

and ky0
need to be determined from the analysis of the impulsive event considered. For example,

for a capture situation: kx0
¼ ky0

¼ 0; for a collision where the relative velocity between the end
effector and the object as well as the normal of the impact are parallel to axis y (perpendicular to
the arm):

kx0
¼ kr sin q1ð� ’q�2 � ’q�

1 q6 cos q1 � ðl ’q�
1 þ ’q�6 Þsin q1Þ; ð9Þ

and

ky0
¼ �kr cos q1ð� ’q�3 � ’q�

1 q6 sin q1 þ ðl ’q�1 þ ’q�6 Þcos q1Þ; ð10Þ

where kr is the coefficient of restitution in the normal direction. (A necessary condition for a
collision to occur is that the velocity components must be such that the relative velocity of the
object to the end effector be negative.) Other collision situations may require more involved
considerations of the contact configuration to determine kx0

and ky0
[9] (e.g., oblique collision with
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friction). It has to be mentioned that in the collision case, only single collisions, where contact
occurs only one location at a time, can be described properly in this way (like the problem studied
here). Multiple, simultaneous collisions may also require the detailed consideration of the sign of
each of the transmitted force impulses, which leads to unilateral constraints in the general
formulation (as described in Ref. [10]).

In the capture case, the above constraints reduce to the form of inert constraints [8] and
continue to exist in the domain of post-impact motion (t > t1 þ e; finite motion) because the
conditions imposed by capture are sustained in that time interval too. For this finite motion, the
constraints can be written as

’q2 ¼ � ’q1q6 cos q1 � ðl ’q1 þ ’q6Þsin q1; ð11Þ

and

’q3 ¼ � ’q1q6 sin q1 þ ðl ’q1 þ ’q6Þcos q1: ð12Þ

4. Derivation of the analytical solution

We will use Jourdain’s principle for the analysis of the system [11,6,12,8]. The impulsive form of
this principle for a hybrid parameter system can be expressed asXn

i¼1

qT

q ’qi

����
t1þe

t1�e
�Iqi

 !
d1 ’qi þ

Z
ðSÞ

Xp

z¼1

qK

q ’wz

����
t1þe

t1�e
�Iwz

 !
d1 ’wz

 !
¼ 0; ð13Þ

where
R
ðSÞðyÞ means summation (integration) over the mass elements of the distributed

parameter members of the system, K is the kinetic energy of a mass element of the distributed
parameter members, T is the kinetic energy of the system, n is the number of time-dependent co-
ordinates and p is the number of time- and space-dependent variables, Iqi

and Iwz
are impulses of

impressed forces2 (if any), and d1 ’qi and d1 ’wz are velocity variations. For our case, n ¼ 7 and
p ¼ 1; ðw1 ¼ wÞ; K is the kinetic energy of a mass element ðdml ¼ RA dxÞ of the flexible link and
can be written as

K ¼ 1
2
’~rrx � ’~rrx dml ¼ 1

2
ð ’q2

1w2 þ ’w2 þ x2 ’q2
1 þ 2x ’q1 ’wÞRA dx; ð14Þ

and

T ¼
1

2
Jr ’q

2
1 þ

1

2
Jl ’q

2
1 þ

1

2
RA

Z l

0

ð ’q2
1w2 þ ’w2 þ 2x ’q1 ’wÞ dx

þ
1

2
mobð ’q2

2 þ ’q2
3Þ þ

1

2
með ’q2

1 ’q
2
6 þ ’q2

6 þ l2 ’q2
1 þ 2l ’q1 ’q6Þ; ð15Þ

where Jr and Jl are the second moments of inertia of the rotor and the undeformed state of the
link about the axis of rotation, me and mob are the masses of the end effector and the object.
Velocity variations connect two velocity systems which are both kinematically admissible (satisfy
the constraints) at the same time and configuration. The constraint equations yield
interdependence conditions for the velocity variations, which give means for further analytical
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considerations. It can be proven [6,8] that velocity variations can be considered continuous
quantities in the vicinity of t1; and must satisfy the post-impact conditions. In our case, from the
constraint equations detailed above, the interdependence between the velocity variations in the
vicinity of t1 may be obtained as

d1 ’q2 ¼ �d1 ’q1q6 cos q1 � ðld1 ’q1 þ d1 ’q6Þsin q1; ð16Þ

and

d1 ’q3 ¼ �d1 ’q1q6 sin q1 þ ðld1 ’q1 þ d1 ’q6Þcos q1: ð17Þ

Based on the above equations, and after some derivations, the impulsive form of Jourdain’s
principle can be expressed for this problem as

meðl2 ’q1jþ� þ ’q2
6 ’q1jþ� þ l ’q6jþ�Þ þ ðJr þ JlÞ ’q1jþ�

�

þ
Z l

0

RAðw2 ’q1jþ� þ x ’wjþ�Þ dx � Iq1

�
d1 ’q1

þ
Z l

0

½RAðx ’q1jþ� þ ’wjþ� � IwÞ�d1 ’w dx þ ½meðl ’q1jþ� þ ’q6jþ�Þ � Iq6
�d1 ’q6

þ ½mob ’q2j
þ
� � Iq2

�d1 ’q2 þ ½mob ’q3j
þ
� � Iq3

�d1 ’q3 ¼ 0; ð18Þ

where ðyÞjþ� ¼ ðyÞjt1þe � ðyÞjt1�e: In this fundamental equation the velocity variations are not
independent of each other due to Eqs. (16) and (17). We will apply a form of the constraint
embedding technique (independent velocity variations) [11,6] to further analyze the problem.
Based on Eqs. (16) and (17), d1 ’q1 and d1 ’q6 are selected as independent velocity variations, which is
the simplest choice. Using this selection, the fundamental Eq. (18) can be modified as

meðl2 ’q1j
þ
� þ q2

6 ’q1j
þ
� þ l ’q6j

þ
�Þ þ ðJr þ JlÞ ’q1j

þ
�

�

þ
Z l

0

RAðw2 ’q1j
þ
� þ x ’wjþ�Þ dx � mobðq6 cos q1 þ l sin q1Þ ’q2j

þ
�

�mobðq6 sin q1 � l cos q1Þ ’q3jþ� � Iq1
þ Iq2

ðq6 cos q1 þ l sin q1Þ

þ Iq3
ðq6 sin q1 � l cos q1Þ

�
d1 ’q1 þ

Z l

0

½RAðx ’q1jþ� þ ’wjþ�Þ � Iw�d1 ’w dx

þ ½meðl ’q1j
þ
� þ ’q6j

þ
�Þ � mob sin q1 ’q2j

þ
� þ mob cos q1 ’q3j

þ
� � Iq6

þ Iq2
sin q1 � Iq3

cos q1�d1 ’q6 ¼ 0:

ð19Þ

In this equation all velocity variations are independent, thus their coefficients must vanish, and
we obtain

meðl2 ’q1jþ� þ q2
6 ’q1jþ� þ l ’q6jþ�Þ þ ðJr þ JlÞ ’q1jþ� þ

Z l

0

RAðw2 ’q1jþ� þ x ’wjþ�Þ dx

� mobðq6 cos q1 þ l sin q1Þ ’q2j
þ
� � mobðq6 sin q1 � l cos q1Þ ’q3j

þ
�

� Iq1
þ Iq2

ðq6 cos q1 þ l sin q1Þ þ Iq3
ðq6 sin q1 � l cos q1Þ ¼ 0; ð20Þ

ARTICLE IN PRESS

J. K .ovecses, W.L. Cleghorn / Journal of Sound and Vibration 269 (2004) 183–195188



RAðx ’q1j
þ
� þ ’wjþ�Þ � Iw ¼ 0; ð21Þ

meðl ’q1j
þ
� þ ’q6j

þ
�Þ � mob sin q1 ’q2j

þ
� þ mob cos q1 ’q3j

þ
� � Iq6

þ Iq2
sin q1 � Iq3

cos q1 ¼ 0: ð22Þ

These are the impulsive dynamics equations for the velocities at t1 þ e; which can be solved
along with constraint Eqs. (7) and (8). The problem here can be solved in explicit form for the
unknown velocities at t1 þ e: The constraints are partially embedded in Eq. (19). To solve the
problem explicitly we need to use the constraint equations again. From Eqs. (7) and (8), ’qþ

2 and ’qþ
3

can be expressed and then, by substituting them, these can be eliminated from the other impulsive
dynamics equations. By performing these operations and solving the three impulsive equations,
we obtain the velocities which are subjected to sudden impulsive changes ð ’qþ1 ; ’qþ6 ; ’wþÞ as

’qþ1 ¼
meq

2
6 þ Jr þ #w2

ðme þ mobÞq2
6 þ Jr þ #w2

’q�1 �
mobq6 cos q1

ðme þ mobÞq2
6 þ Jr þ #w2

kx0
þ ’q�

2 þ
Iq2

mob

	 


�
mobq6 sin q1

ðme þ mobÞq2
6 þ Jr þ #w2

ky0
þ ’q�3 þ

Iq3

mob

	 

þ

Iq1
� lIq6

�
R l

0 xIw dx

ðme þ mobÞq2
6 þ Jr þ #w2

ð23Þ

’qþ
6 ¼

mel

ðme þ mobÞ
�

ðmeq
2
6 þ Jr þ #w2Þl

ðme þ mobÞq2
6 þ Jr þ #w2

	 

’q�1 þ

me

me þ mob
’q�6

�
mob sin q1

me þ mob

�
mobq6l cos q1

ðme þ mobÞq2
6 þ Jr þ #w2

	 

kx0

þ ’q�
2 þ

Iq2

mob

	 


�
mob cos q1

me þ mob

�
mobq6l sin q1

ðme þ mobÞq2
6 þ Jr þ #w2

	 

ky0

þ ’q�3 þ
Iq3

mob

	 


þ
1

me þ mob

�
l2

ðme þ mobÞq2
6 þ Jr þ #w2

	 

Iq6

þ
l

ðme þ mobÞq2
6 þ Jr þ #w2

Iq1
�
Z l

0

xIw dx

	 

; ð24Þ

and

’wþ ¼ ’w� þ xð ’q�1 � ’qþ
1 Þ þ

Iw

RA
; ð25Þ

where #w2 ¼ RA
R l

0 w2 dx: No other velocities are involved in the impulsive motion. This is the
general, analytical solution for the impulsive motion of the model of the system. It can be reduced
to simpler forms for specific situations, as will be shown later for a particular case. This general
solution for the velocity discontinuities can be useful in assessing various discretized modelling
approaches for flexible beams experiencing impulsive events, and in designing systems for impact
situations. The above results show that the joint ð ’q1Þ and the inner parts of the flexible beam ð ’wÞ
may also experience a sudden velocity change at t1 þ e: This is because we did not consider the
longitudinal flexibility of the beam, and assumed that in the longitudinal direction the beam is
‘‘rigid’’. The fundamental natural frequencies characterizing the longitudinal flexibility of a
slender beam are much higher than those pertaining to lateral flexibility. Thus, the dynamic
behavior resulting from longitudinal flexibility has a different, ‘‘more compressed’’ time scale than
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that of the motion originating from lateral flexibility. Assuming that the beam is ‘‘rigid’’ in the
longitudinal direction means that we neglect the time scale of longitudinal flexibility relative to
that of lateral flexibility. This may usually be a reasonable assumption that has physical grounds,
considering the differences between longitudinal and flexural stiffness values as detailed above.
The boundary disturbance occurs in a non-inertial rotating frame, and the rotation of this frame is
also a dependent parameter of the problem ( ’qþ

1 a ’q�
1 generally), because of the elimination of

longitudinal flexibility. As a consequence, in general, not only the boundary of the link is
subjected to sudden velocity change, but other parts will also experience a sudden velocity change
with respect to the inertial frame according to Eq. (25). According to Eq. (23), ’qþ

1 ¼ ’q�
1 can occur

only if the deformations of the link vanish at t1 � e: It has to be mentioned that this phenomenon
is not trivial, and can be pointed out by using continuous flexible body models.

In the following, we consider a special situation where the flexible arm is at rest before the
impulsive event with no deformations, q1 ¼ 0; the approaching velocity of the object is
perpendicular to the arm, thus ’q�2 ¼ 0; coefficients kx0

and ky0
are equal to zero (capture

situation), and no impressed impulsive forces act on the system, Iq1
¼ 0; Iq2

¼ Iq3
¼ Iq6

¼ 0; Iw ¼
0: For this case, the above general solutions reduce to simpler forms as

’qþ1 ¼ 0; ’qþ6 ¼ ’wðl; tÞþ ¼
mob

me þ mob
’q�3 ; ’wþ ¼ 0: ð26Þ

This means that the arm experiences a sudden velocity change only at its tip and the joint will
remain at rest immediately after capture. For this case, in the following section, we will present
comparisons with finite element solutions concerning the velocity jumps at the tip and at the joint.

5. Numerical solution, simulation and comparison

Discretized models were also developed for the flexible link using finite element modelling based
on cubic shape functions. The mathematical model characterizing the impulsive motion of the
discretized system can be derived by using impulsive constraints and Jourdain’s principle, as was
done for the continuous system. The difference is only that the space dependence can now be
eliminated by using the cubic shape functions and introducing the corresponding time-dependent
co-ordinates to represent the deformation of the link. The analytical results obtained for the
continuous system for the post-impact velocities were not used in establishing the finite element
solution for the impulsive motion. The first objective was to compare the analytical results and the
numerical results obtained using the finite element discretization. We investigated numerically the
special case outlined in the previous section with analytical solution given by Eq. (26), where no
impressed force impulses (e.g., external disturbances) are present. We have selected the parameters
of the flexible arm and the object to be those of an experimental system reported in the literature
(Refs. [3,13]). For this experimental system, observations have been reported in Refs. [3,13]
regarding the finite motion of the system following the impulsive event (mass capture). (These
experimental observations will be used later in this section.) We detail here only the parameters
that play a considerable role in the solution of the impulsive motion problem. For the other
parameters, which are important in the simulation of the resulted finite motion (estimated joint
friction coefficients, etc.), we refer to the cited papers. The parameters of the system are as follows:
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beam length, 0.725m; beam cross-sectional area: 3.175
 10�4m2, second moment of area of
beam: 2.67
 10�10m4; Young’s modulus: 6.5
 1010 Pa, beam linear mass density, 0.874 kg/m;
Hub inertia, 1.3233
 10�4 kgm2, end effector mass, 0.55 kg; mass of the object: 0.5 kg, velocity
difference between the end effector and the object before capture, �0.76m/s. For such
parameters, the numerical values of the analytical solutions, according to Eq. (26), are ’qþ1 ¼ 0 and
’qþ6 ¼ �0:361904762m=s: The finite element solutions obtained employing various numbers of
elements are shown in Table 1. As the number of finite elements is increased, the numerical
solutions converge to the analytical solutions. This means that the finite element model of the link
can be used with confidence in predicting the impulsive motion of the arm caused by the impulsive
event of dynamic mass capture. By employing 15–20 finite elements, the impulsive motion can be
predicted very accurately.

Our next objective was to investigate the post-impact finite motion of the arm (this motion is
the result of the impulsive event), and compare the results with that of the experimental
investigation. In the experiment, as described in Ref. [13], a rail-guided platform (‘‘rail-car’’),
upon which the object sits, was used to deliver the object for capture to the end effector with a
prescribed velocity. At the time of capture, the platform misses the object and continues to move
further (down an incline), while the object attaches to the end effector and starts to move together
with it. The details of the experiment can be found in Refs. [3,13]. Experimental observations were
reported concerning two main features of the system’s finite motion after capture. The first was
the time history of the flexible deflection of the tip of the beam in the initial period of 1 s. The
second feature was the time history of the joint angle during a period of 10 s following mass
capture. We also investigated these two features in the simulation of the finite motion of the
system. The detailed equations of motion for the finite motion of the system have also been
developed using finite element modelling. The analytical results obtained for the impulsive motion
were applied as input initial values to the model describing the finite motion. It has to be noted
that the finite element solution obtained for the impulsive motion (Table 1) could have been used
here to replace the analytical solution, since it also gives accurate results, as shown in Table 1. A
more detailed description on these simulations can be found in Ref. [14]. Ten finite elements were
used to approximate link flexibility. Numerical integrations, for finite motion following mass
capture, were performed by using fifth and eighth order explicit Runge–Kutta methods (Dormand
and Prince algorithms, see details in Refs. [15,16]).

In the simulation of motion of a mechanical system, one of the most difficult problems is to
accurately account for static friction and stick-slip motion in the joints. To consider these
phenomena, we have used the so-called ‘‘equivalent force method’’ which was proposed in Ref.
[17] and extended further in Ref. [18]. This type of treatment is useful when there are only a few
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Table 1

Finite element solutions for the impulsive motion

Number of elements ’qþ1 ðrad=sÞ ’qþ6 ðm=sÞ

5 �0.002694259 �0.356824511

10 �1.34875
 10�6 �0.360333552

15 �1.10525
 10�9 �0.360856424

20 �1.73
 10�12 �0.361117939
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‘‘simultaneous’’ frictional interfaces, and can basically be considered as a special case of the
general method described in Ref. [10].

An interesting phenomenon due to friction is the influence of the detachment transition on the
impulsive and post-impact motions of the system. This transition happens at the time of capture
when static friction forces between the rail-car and the object must be overcome to detach the
object from the rail-car, and at least for a very short period of time the object will slide on the rail-
car before separation. This phenomenon was first left unmodelled in the analytical solution for
impulsive motion and also during the numerical simulations, which resulted in differences in
magnitude between the simulated and experimentally observed tip deflection response of the
beam. To consider these effects, it has to be realized that the resultant interaction force between
the rail-car and the object can be impulsive due to the discontinuous change in the system
topology Ref. [14]. This force has to be considered as an external, impressed force impulse in the
impulsive motion formulation, as given in the general solution, Eqs. (23)–(25), to model the effects
of detachment. The simplified solution given for this problem in Eq. (26) does not account for the
force impulse. Thus, we need to modify the simplified solution for the impulsive motion based on
Eqs. (23)–(25). The force impulse due to the detachment transition will act in the direction the
object is forcing the arm to move. This direction is perpendicular to the arm for this particular
setup (as was discussed earlier), hence, Iq3

describes its effects in Eqs. (23)–(25). The simplified
solution for this case can then be obtained from these equations as

’qþ
1 ¼ 0; ’qþ

6 ¼ ’wðl; tÞþ ¼
mob

me þ mob
’q�
3 þ

Iq3

mob

	 

; ’wþ ¼ 0: ð27Þ

For the experimental setup there were no parameters available for the friction interaction
between the rail-car and the object to estimate Iq3

: A relatively small static friction coefficient with
a magnitude of 0.05 was assumed and a Dirac delta type force function was used to model Iq3

to
obtain the solution for the impulsive motion based on Eq. (27). The simulation results obtained
considering these effects gave a tip deviation response, the magnitude of which is very close to the
experimentally observed response.
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Fig. 2. Computed tip deflection response of the flexible link.
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For the flexible defection of the tip of the beam in the first second of motion, our results are
shown in Fig. 2, considering 500 samples per second. In the frequency and phase of motion, and in
the magnitudes of the deflections there is good agreement between the experimental data (Refs.
[3,13]) and our computed results.

For the time history of the joint angle during a period of 10 s, our computational results are
shown in Fig. 3 using 50 samples/s. Considering that the joint friction parameters are only
estimated values, these results are in good agreement with the experimental observations. By
performing several simulations, we found that in the initial phase of motion, the dynamic friction
is more dominant than the static friction in influencing the nature of motion. However, later,
static friction becomes prevalent.

We also evaluated the influence of two damping terms, Rayleigh damping and friction, on the finite
motion of the system by several simulations, considering models with and without these terms. It was
found that friction is the primary, dominant means for energy loss during finite motion. The presence
or lack of Rayleigh damping in this example only very slightly influences the behavior of the system.

Simulations for the post-impact finite motion of the system employing various numbers of finite
elements were also performed. It was found that to represent the overall behavior of the system
including both impulsive motion and finite motion, the use of 5–10 finite elements is sufficient to
achieve reasonable accuracy. This is in agreement with the results obtained by considering the
pure impulsive motion only, as presented in Table 1. Further increasing the number of elements
did not result in significant increase in accuracy, but it caused significantly greater times in
computations. This observation is also supported by Ref. [19], where various contact models were
considered for beams for use in vehicle crash-worthiness analysis.

6. Conclusions

In this paper the impulsive motion of a one-link flexible arm has been investigated. Impulsive
events due to capture of an object or collision with an object have been studied. The flexible link
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Fig. 3. Computed joint angle response of the arm.
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was considered as a continuous beam. An analytical solution has been outlined for the problem
using the theory of hybrid parameter mechanical systems and modelling impulsive events as
constrained motion problems. According to our knowledge, this general solution has not been
presented before. This solution for the velocity discontinuities can be useful to assess various
modelling approaches for flexible beams experiencing impulsive events as well as to assist in
design processes involving impact situations. As discussed in Section 4, it can also be used to point
out non-trivial phenomena occurring in flexible systems due to impulsive events. A comparison
has been carried out and presented between the analytical solution and numerical, finite element
solutions. By increasing the number of elements in the discretized model, the numerical solutions
converge to the analytical results. A relatively small number of elements (5–10 elements) may be
sufficient to represent the behavior of the system with reasonable accuracy. Finite motion resulted
from an impulsive event was also studied by simulations, and the results were compared to
experimental data. Good agreement has been found between the two sets of data. It was also
noticed that frictional interfaces have substantial effect on both impulsive and finite motions of
the experimental system.

This paper was mainly concerned with the analysis of a single rotating flexible beam. However,
the main framework of the work can be extended and applied for more complex systems as well.
The technique to model impulsive events using impulsive constraints, and the method to derive
analytical solutions for impulsive motion are generally valid [6]. It will be a future goal to derive
analytical solutions for multibody systems consisting of flexible beams to study various impact
situations and make assessments using experimental data.
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